skip to main content


Search for: All records

Creators/Authors contains: "Sarkar, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Inclined cables used in bridges or other infrastructures are vulnerable to unsteady wind-induced loads producing moderate- to large-amplitude vibration that may result in damage or failure of the cables, resulting in catastrophic failure of the structure they secure. In the present study, wind-induced response of an inclined smooth cable was studied through wind tunnel measurements using a flexible cable model for a better understanding of the vibration characteristics of structural cables in atmospheric boundary layer wind. For this purpose, in-plane and out-of-plane responses of a sagged and a non-sagged flexible cable were recorded by four accelerometers. Four cases with different yaw and inclination angles of a cable with approximate sag ratios of 1/10 were studied to investigate the wind directionality effect on its excitation mode(s) and response amplitude. Cable tension was also measured during all experiments to assess the correlation of wind speed, excitation vibration mode, and natural frequency of the cable with change in cable tension. Additionally, two inclined cables with no sag were tested to determine the influence of sag of a cable on its vibration characteristics. In the second part of this study, a series of finite element analyses were conducted to predict the wind-induced aerodynamic damping of an inclined bridge cable. Experimental results showed that excitation mode(s) of a cable depend on wind speed, inclination angle, and sag ratio and cable tension. First, second, and third vibration modes were observed at a low wind speed for different test cases, whereas higher vibration modes were observed to contribute to the cable response at high wind speeds. Moreover, it was seen that the cable tension significantly increased with wind speed resulting in increased value of the excited natural frequency. Numerical results obtained through finite element analysis of an inclined full-scale cable showed that the criteria that are based on section models can underestimate the critical reduced velocity for dry cable galloping. 
    more » « less
  2. null (Ed.)
    A computational approach based on a k-ω delayed detached eddy simulation model for predicting aerodynamic loads on a smooth circular cylinder is verified against experiments. Comparisons with experiments are performed for flow over a rigidly mounted (static) cylinder and for an elastically-mounted rigid cylinder oscillating in the transverse direction due to vortex-induced vibration (VIV). For the static cases, measurement data from the literature is used to validate the predictions for normally incident flow. New experiments are conducted as a part of this study for yawed flow, where the cylinder axis is inclined with respect to the inflow velocity at the desired yaw angle, β = 30◦. Good agreement is observed between the predictions and measurements for mean and rms surface pressure. Three yawed flow cases (β = 15◦, 30◦, & 45◦) are simulated and the results are found to be independent of β (independence principle) when the flow speed normal to the cylinder axis is selected as the reference velocity scale. Dynamic (VIV) simulations for an elastically-mounted rigid cylinder are performed by coupling the flow solver with a solid dynamics solver where the cylinder motion is modeled as a mass–spring–damper system. The simulations accurately predict the displacement amplitude and unsteady loading over a wide range of reduced velocity, including the region where ‘‘lock-in’’ (synchronization) occurs. VIV simulations are performed at two yaw angles, β = 0◦ and 45◦ and the independence principle is found to be valid over the range of reduced velocities tested with a slightly higher discrepancy when the vortex shedding frequency is close to the natural frequency of the system. 
    more » « less